侵权投诉

当前位置:

OFweek仪器仪表网

通用分析仪器

正文

基于串行总线的测量仪器模拟节点设计

导读: 随着测试技术、计算机技术和大规模集成电路技术的飞速发展,现代智能测量仪器不但对功能、性能、精度和指标的要求越来越高,而且对系统可靠性、可维修性的要求也越来越高。

  智能测量仪器作为信息获取工具,是一种集多个门类、多种学科技术于一体的复杂有机体。随着测试技术、计算机技术和大规模集成电路技术的飞速发展,现代智能测量仪器不但对功能、性能、精度和指标的要求越来越高,而且对系统可靠性、可维修性的要求也越来越高。因此,这就要求测量仪器具有完备的内建测试 (build intest,BIT)功能以及自我调节和补偿能力,以使测量仪器系统本身具备测试、诊断和故障定位的能力以及适应各种环境、温度和器部件性能变化的能力。

  但是,智能测量仪器要具备这些测试、诊断以及调节、补偿能力,必须首先对整个测量仪器工作状态进行监测,然后通过对这些节点的状态进行分析和处理,从而进行进一步的故障定位或调节补偿。这些状态主要包括环境温度以及电路板上各关键电路节点的电压、电流、功率等,由于都是模拟量,故常称这些分布在电路板上的观测节点为模拟节点。可见,对智能测量仪器工作环境以及各关键节点模拟量的检测是智能测量仪器内建测试以及调节补偿的前提和基础,也是智能测量仪器可测性设计的重要一环,需要认真对待。

  下面介绍一种基于串行总线的智能测量仪器模拟节点信号监测电路的没计思想和设计方法。

  1.模拟节点信号监测设计原理

  典型的电路板模拟节点监测电路通常由信号检测通道、信号调理电路、多路选择开关、采样/保持电路、A/D转换电路以及处理器接口和控制逻辑等构成,如图1所示。

  信号检测通道主要用来探测电路板上各探测点的温度、电流、电压等模拟量,通常针对不同探测对象而使用不同的传感器、检波器或相关电路将待检测信号转换成一定的电流或电压信号。

  信号调理电路是为了保证A/D转换的精度而在模拟输入信号进入A/D转换器之前首先进行的必要处理,以有效滤除不需要信号的影响,改善信号质量,提高信噪比,增强信号的抗下扰能力,保证输入信号符合A/D转换器并处于其最佳转换范同。信号调理所采用的技术通常包括增谧放大、衰减、滤波、整流、检波信号转换等。多路开关是为了简化电路和降低成本而保证多个模拟节点共用同一个A/D转换器而设计,以方便通过软件实现对某一路模拟艟的转换。多路开关常用的有机械触点式和电子式2种,通常需要根据通道数目、输入方式(单端还是差分输入)、电平高低、切换时间及稳定时间、通路问所允许的最大串绕误差以及控制方式等加以综合考虑选择。

  当模拟节点输入信号的频率较高时,为减小A/D转换的孔径误差常设计使用采样/保持电路。采样保持器通常根据输入信号范围、输入信号变化率、采样开关切换速度以及采样误差的允许范围等选择。如果输入模拟信号频率较低,A/D转换相对足够快或A/D集成了采样保持器时则可以省略采样保持器的设计。

1  2  3  4  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号