当前位置:

OFweek仪器仪表网

通用分析仪器

正文

我国成功研制世界上最亮的可调极紫外光源

导读: 世界上90%的能源来自于燃烧,高效利用能源以及减少污染排放是重要的世界性问题。极紫外光可利用单光子电离的方法灵敏探测燃烧中间反应步骤和中间体的理想光源,为阐明燃烧过程中的化学机理提供坚实的基础。

15日,由中国科学院大连化学物理研究所和上海应用物理研究所联合研制的“基于可调极紫外相干光源综合实验装置”——大连光源调试出光,输出光脉冲光子数达到140万亿个,成为单脉冲世界上最亮的可调极紫外光源,这意味着我国在极紫外波段自由电子激光的研制方面走在了世界前列。

“这是中国科学院乃至我国的又一项具有极高显示度的重大科技成果。”中国科学院副院长王恩哥介绍,装置中90%的仪器设备均由我国自主研发,标志着我国在这一领域占据了世界领先地位,为国家未来发展更新一代的高重复频率极紫外自由电子激光打下了坚实的基础。

大连化物所研究院张未卿告诉记者,大连化物所从2016年9月开始调试及紫外光,调试第一天就有了波荡器出光,说明了设备的安装没有问题,之后要调试的就是极紫外光。

调试的过程很辛苦,也遇到了一些困难。“调试的时候,种子激光和电子束要在空间、时间上都重叠在一起,才会发生作用,但他们的速度是以皮秒(1皮秒 = 1万亿分之一秒)计算的,所以非常困难。在调试中,还出现过光线被挡住的情况,工作人员要在100米长的机器上逐段排查,找出挡光的原因。”张未卿说,几个月的时间,机器一直不停运转,全体工作人员轮班倒,为了尽快调出所需要的极紫外光源,通宵熬夜工作成了家常便饭。



图片为大连光源 摄影 上海应用物理研究所胡蔚成

什么是极紫外光?

近代物理证明,光的本质是电磁波,同时也是粒子,光子本身带有能量,波长越短,光子的能量就越高。可见光的波长大致处于400~700纳米之间(1纳米等于10亿分之一米),其光子能量可以刺激人的视觉细胞产生信号,而波长小于可见光的紫外光因为光子能量高,就会对人体产生危害,比如UVA(320~ 400纳米)和UVB(270 ~ 320纳米)紫外光。而当波长短到100纳米附近时,一个光子所具备的能量就足以电离一个原子或分子而又不会把分子打碎,这个波段的光称为极紫外光。

由于在科学实验中,需要探测的原子或分子数量可能非常少,存在时间也非常短,普通的极紫外光源无法满足这个需求,必须要有高亮度的极紫外光源,即极紫外激光。

极紫外光能够电离几乎所有的组成普通物质的原子和分子的特性使得它无法在普通物质(包括空气)中传播,只能在真空中传播,所以极紫外光也称为真空紫外光。因此,极紫外激光无法在普通物质中产生和放大,只能在“特殊物质”中产生,这个“特殊物质”就是脱离原子核而单独存在的自由状态的电子。

据介绍,大连光源是当今世界上唯一工作在极紫外波段的自由电子激光用户装置,大连光源也将成为当今世界上在极紫外波段最强的自由电子激光。

如何输出极紫外光?

根据电动力学原理,加速运动的电子会向外辐射电磁波,尤其是来回变向跑动(振荡)的电子辐射电磁波能力非常强。常用的无线信号,无论是电视还是手机,都是通过驱使电子在天线里来回振荡发射电磁波。在大连极紫外相干光源中,时间宽度为几个皮秒(1皮秒 = 1万亿分之一秒)的脉冲激光(驱动激光)在光阴极上打出一簇高密度的脉冲电子,利用直线加速器将这个脉冲电子束加速到3亿电子伏特的能量(这相当于让电子穿越3亿伏的超高压电场)。这时,由于相对论效应,电子的速度与光速非常接近。再用另一束皮秒或者亚皮秒时间宽度的强激光(种子激光)照射在这个高能电子束上,电子束中的电子在种子激光的电磁场的作用下,就会按照激光的波长在空间重新分布(调制),其中含有丰富的谐波成分。然后让空间分布被调制的电子束继续穿越一系列周期性变化的磁场(即波荡器)。

根据电磁学原理,电子在周期性磁场中会一边以光速向前飞行,一边左右摆动,这样电子就会向前辐射出光线。由于电子飞行的速度和光速非常接近,电子在飞行途中各处发射的光会叠加增强,同时电子自身辐射的光也在调制电子自己的空间分布,从而使得电子更加强烈地辐射光线。如果适当地选择周期性磁场的强度,就会使得种子激光中的某个谐波成分按照前述方式急剧地自激放大并达到饱和,从而输出极紫外光。

极紫外光让原子分子“无处遁形”

很多物理和化学过程在本质上都是原子和分子过程,比如臭氧层空洞的形成涉及到大气上层臭氧分子(O3)的淬灭机制,雾霾的形成涉及到污染物分子(SO2、CO等)聚集过程,燃烧过程涉及到氧原子或氧分子与其它分子的反应等一系列过程。要控制或利用这些物理和化学过程,就需要在实验室里研究这些过程所涉及到的原子和分子的反应机制,因此就需要精确并且高灵敏度地探测所涉及到原子和分子。

在极紫外光照射下的区域内,几乎所有的原子和分子都“无处遁形”。比如雾霾,大气中的化学物质与水分子作用后,形成分子团簇,这些团簇在生长过程中吸附大气中各种污染分子以及水分子,生长为较大的气溶胶颗粒,并逐渐成长为雾霾。大连光源能够解析大气化学中性团簇的精细结构,揭示大气中气溶胶的成核动力学机制。

世界上90%的能源来自于燃烧,高效利用能源以及减少污染排放是重要的世界性问题。极紫外光可利用单光子电离的方法灵敏探测燃烧中间反应步骤和中间体的理想光源,为阐明燃烧过程中的化学机理提供坚实的基础。

王恩哥说,当今世界,大科学工程对于科技的发展起着越来越重要的推动作用。“大连光源”的建成出光,成为我国大科学工程的又一成功范例,也必将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国的科技事业注入了新的活力。

大连化物所副所长杨学明希望,大连光源能够推动技术研究的发展,用电子极紫外光源来推动分子科学,以及化学、能源等相关领域的发展。

责任编辑:lime
免责声明: 本文仅代表作者个人观点,与 OFweek仪器仪表网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: